Positive integer powers of certain complex tridiagonal matrices

نویسندگان

  • Ahmet Öteles
  • Mehmet Akbulak
چکیده

In this paper, we firstly present a general expression for the entries of the th r   N r power of certain -square n are complex tridiagonal matrix, in terms of the Chebyshev polynomials of the first kind. Secondly, we obtain two complex factorizations for Fibonacci and Pell numbers. We also give some Maple 13 procedures in order to verify our calculations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Positive Integer Powers of the Tridiagonal Toeplitz Matrices

In this paper we present an explicit expression for the arbitrary positive integer powers of the tridiagonal Toeplitz matrices.

متن کامل

On the nonnegative inverse eigenvalue problem of traditional matrices

In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.

متن کامل

Inverse Tridiagonal

In this paper, we consider matrices whose inverses are tridiagonal Z{matrices. Based on a characterization of symmetric tridiagonal matrices by Gantmacher and Krein, we show that a matrix is the inverse of a tridiagonal Z{matrix if and only if, up to a positive scaling of the rows, it is the Hadamard product of a so called weak type D matrix and a ipped weak type D matrix whose parameters satis...

متن کامل

Inverse Tridiagonal Z – Matrices

In this paper, we consider matrices whose inverses are tridiagonal Z–matrices. Based on a characterization of symmetric tridiagonal matrices by Gantmacher and Krein, we show that a matrix is the inverse of a tridiagonal Z–matrix if and only if, up to a positive scaling of the rows, it is the Hadamard product of a so called weak type D matrix and a flipped weak type D matrix whose parameters sat...

متن کامل

Allowable Spectral Perturbations for ZME-Matrices**

A ZME-matrix is a matrix A all of whose positive integer powers are Z-matrices, and whose odd powers are irreducible. We find a combinatorial partial order on the spectral idempotents of a ZME-matrix A which determines the allowable spectral perturbations B for which B is again a ZME-matrix. We apply this result to show that under certain restrictions, the product of two ZME-matrices is a ZME-m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 219  شماره 

صفحات  -

تاریخ انتشار 2013